Particularly, photothermal energy storage systems that store excess solar energy generated during the day for nighttime utilization are widely adopted. Stearic acid (SA) has garnered significant attention as a recommended PCM due to its favorable properties [5], [6], such as cost-effectiveness, high thermal storage density, non-toxicity, …
Phase change materials (PCMs) have garnered significant attention as a prospective solution for photothermal energy storage, attributed to their notable energy density. Nonetheless, the constrained thermal conductivity of PCMs leads to delayed heat storage from the photothermal conversion surface, causing a build-up of heat at the …
As seen from the photothermal conversion and storage curves (Fig. 3 e), PEG@EG/PPy composite PCMs exhibit typical photothermal conversion and storage behavior under light radiation. Specifically, when the light switch is turned on, light energy is absorbed by EG/PPy and then converted into thermal energy in the form of sensible heat.
To evaluate the photothermal energy-storage performance of the PU/MePCM composite films, an experimental setup was designed as shown in Fig. S6. A Xenon arc lamp with an irradiation intensity of 1000 mW·cm −2 was used as a …
Photothermal therapy (PTT) using a photo-absorbent in the near-infrared (NIR) region is an effective methodology for local cancer treatment. Before PTT using a NIR absorbent is ...
Making the most use of solar energy along the photothermal evaporation process can contribute in addressing the energy and water scarcities. Researchers have developed strategies to further …
Generally speaking, if a reaction involves light, heat, and catalytic conversion, it can be regarded as photothermal catalysis. The thermal energy or heat …
PEG-based latent heat storage technology can be used in a variety of industries, including solar energy storage, energy-efficient buildings, and waste heat recovery [5]. However, the applicability of PEG-based PCMs in many fields is constrained by defects such as poor shape stability of PEG, easy leakage during phase transition, low …
Since the maximum temperature of photothermal energy storage can reach about 600, the heating of air by the heat displaced from the compression section is low-temperature heating, which is ignored in this …
Energy efficiency in buildings and the mitigation of CO2 are key factors in the advancement ofcontemporary architecture, which includes aesthetic elements such as skylights ...
modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion Powder Technol., 399 (2022), Article 117189 View PDF View article View in Scopus [24] Z., ...
The photothermal energy conversion and storage mechanism was illustrated. Abstract Phase change nanocapsules exhibit significant potential in harnessing photothermal energy to address the ever-growing energy demand; however, their application is restricted by limited solar absorption capacity and low thermal conductivity .
25. Toward controlled thermal energy storage and release in organic phase change materials. As for the phase change process, the photoswitchable PCMs suffer from low kinetics of phase change due to the low thermal …
Low photothermal conversion efficiency and difficulty in thermal energy storage are still obstacles during the solar energy utilization and conversion [9]. In order to solve the above problems, finding a suitable thermal storage material with photothermal conversion capability for long-term solar thermal energy storage has become a research …
Currently, a major challenge facing phase change materials for solar energy storage is their high cost, particularly due to the expense of the photothermal conversion particles. Therefore, there is an urgent need to find a method to reduce the usage of photothermal conversion particles without compromising their photothermal conversion …
The integration of PCMs and photothermal conversion materials can efficiently convert solar energy into thermal energy and store it in the form of latent heat. This integrated technology can achieve the goal of simultaneous solar energy utilization and efficient energy storage [1,[15], [16], [17], [18], [19]].
Photothermal catalysts can convert near-infrared (NIR) light into thermal energy with nearly 100 % efficiency, making them suitable for photothermal applications [31]. Nevertheless, a significant challenge with thermal catalysts is the need for high temperatures (e.g., 250 °C) for activation, which sunlight alone cannot provide.
1. Introduction Solar energy is a high-priority clean energy alternative to fossil fuels in the current energy landscape, and the acquisition, storage, and utilization of solar energy have long been the subject of research [[1], [2], [3], [4]].The development of new materials ...
Abstract. Infiltrating phase change materials (PCMs) into nanoporous metal–organic frameworks (MOFs) is accepted as a cutting-edge thermal energy …
A photothermal catalysis process will be established by introducing photon energy into a thermal catalytic process. In this review, an overview of …
Additionally, our developed MOF-based photothermal composite PCMs also exhibit long-standing antileakage stability, energy storage stability, and photothermal conversion stability. The proposed coating strategy and in-depth understanding mechanism are expected to facilitate the development of high-efficiency MOF-based photothermal …
Abstract. Photothermal catalysis is a process to combine thermal catalysis and photocatalysis, and it has been extensively reported over the past few years. Thermal catalysis, a conventional and mostly used industrial process, is performed at high temperatures to overcome the activation energy barrier, thus leading to a chemical …
Phase change material (PCM)-based thermal energy storage significantly affects emerging applications, with recent advancements in enhancing heat capacity and cooling power. This perspective by Yang et al. discusses PCM thermal energy storage progress, outlines research challenges and new opportunities, and proposes a roadmap for the research …
A novel thermal energy storage (TES) composites system consisting of the microPCMs based on n-octadecane nucleus and SiO 2 /honeycomb-structure BN layer-by-layer shell as energy storage materials, and wood powder/Poly (butyleneadipate-co-terephthalate) (PBAT) as the matrix, was created with the goal of improving the heat …
Besides, SAT also is a promising thermal storage media for heat pump energy storage system [7,16], as shown in Fig. 1(b). This system can operate a heat pump during nighttime for heating in the thermal storage tank and uses the stored energy during daytime when the higher loads occur, addressing the stabilization of electricity demand.
In this review, we comprehensively summarized the state-of-the-art photothermal applications for solar energy conversion, including photothermal water evaporation and desalination, photothermal …
From RCh stabilized Pickering emulsions, a high energy storage GO-modified microPCM with photothermal conversion capacity was obtained. The microPCM exhibited a high encapsulation ratio of 92.3%, high enthalpy heat energy storage of 234.7 J/g, no leakage, high thermal reliability, and stability at a 9:1 core/shell ratio.
Photodynamic therapy has been explored in the clinic for a variety of cancers and premalignant conditions, including skin, esophageal, bladder, lung, brain and prostate. Photothermal therapy. exploits relatively high-power lasers (up to 10 W) to induce localized tumor heating.
DOI: 10.1016/j.solmat.2024.112831 Corpus ID: 268803028 Synergistic enhancement of photothermal energy storage capacity of polyethylene glycol by polydopamine and nano-copper particles @article{Liu2024SynergisticEO, title={Synergistic enhancement of ...
Abstract. Photothermal therapy (PTT) has attracted extensive research attention as a noninvasive and selective treatment strategy for numerous cancers. PTT functions via photothermal effects induced by converting light energy into heat on near-infrared laser irradiation. Despite the great advances in PTT for cancer treatment, the …
2 Basic Mechanisms of Solar-Driven Photothermal Conversions Conversion of solar energy into other forms of energy is urgently needed to address the global energy issues. [63, 64] It can be realized by different conversion processes, such as PV effect, [4, 65-67] photochemical transformation, [68-70] photoelectrochemical process, …
Introduction Solid-liquid phase-change materials (PCMs) are a type of latent heat-storage material. They can absorb and store a large quantity of thermal energy from different heat sources, such as solar and waste heat, and release it …
Nowadays, solar energy is widely applied in thermal energy storage, seawater desalination, space heating, energy-efficient buildings, and photovoltaic systems [3]. Since solar irradiation is highly variable and depends on time of day [4], it is important to use a proper energy storage system to compromise solar energy capture and usage.